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The conundrum

Being somewhat informal for the moment, consider a “Z× Z× Z
Rubik’s cube”, an infinitary analogue of the N × N × N Rubik’s
cube.

As with an ordinary Rubik’s cube, we imagine scrambling it by
twisting various layers. We then endeavour to return it to the
initial (solved) state through a further sequence of twists.

It seems sensible to apply an infinite sequence of twists and end up
with a perfectly good configuration (at least sometimes. . . )

No reason to stop there, the process is inherently transfinite.
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The conundrum

On an finite Rubik’s cube, we know every attainable configuration
can be solved.

Just execute the scramble in reverse!

This argument fails on its face for transfinite sequences of twists.

Question

On an infinite Rubik’s cube, can every attainable configuration
(perhaps via a transfinite sequence of twists) be solved?
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Main results

Two variations, the edged and edgeless cubes of arbitrary
cardinalities ℵα

Theorem (T.)

For the edged cube of cardinality ℵα, if σ is a (transfinite)
sequence of twists which converges when applies to the solved
state, then there is sequence τ (of length < ωα+1) which inverts σ.

Theorem (T.)

For the countable edgeless cube, if f is a configuration obtained
from the solved state by a convergent (transfinite) sequence, then
f is solvable in at most ω2 many moves. I.e., there is a sequence of
twists of length ≤ ω2 which yields the solved configuration when
applied to f .
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The edgeless cube QL

I Fix an infinite set L. Let −L be a copy of L (writing −r ∈ −L
for the copy of each r ∈ L) and let 0,±∞ denote
distinguished objects not in ±L.

I For convenience, define the order −∞ < −r < 0 < r < +∞
for r ∈ L.

I Write L† = −L ∪ {0} ∪ L and L̄† = [−∞,+∞] = L† ∪ {±∞}.
I One should think of the structure QL we are defining as the

“L† × L† × L†” Rubik’s cube:

Definition (The edgless cube QL)

Let U = L̄† × L̄† × L̄† endowed with (x , y , z) coordinates and let
QL be the (disjoint union of) six copies of L†× L† embedded in the
extreme ±∞ planes of U in the obvious way. Points of QL (i.e.,
points of U with exactly one ±∞ coordinate) are called cells.
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Twists

Definition

A quarter-turn twist Ti ,α : QL → QL for i ∈ {x , y , z} and α ∈ L̄† is
permutation of QL given by a rotation of the cells in the i = α
plane according to the right-hand rule.

I E.g., Tx ,α(α,+∞, β) = (α,−β,+∞) for
α ∈ L†. (Right, in magenta.)

I Ti ,±∞ are face twists. For example,
Tx ,+∞(+∞, β, γ) = (+∞,−γ, β) is a
rotation of the right face {x = +∞}.
(Right, in cyan.)

I NB, face twists non-trivially permute only
the cells in the concerned face. This is
really what we mean by “edgeless”.

Tx,α

+z

+x

+y

Tx,+∞

0 α
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Configurations

Definition

I A configuration of QL is a map f : QL → Γ ∪ {∅} to the
gamut Γ = {r, b, w, o, g, y} together with the special value ∅.

I A configuration is legal if it does not take the value ∅.

I The solved configuration is the assignment

fsolved(x , y , z) =



r if x = +∞,

b if y = +∞,

w if z = +∞,

o if x = −∞,

g if y = −∞,

y if z = −∞.
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Action of twist sequences

I Quarter-, half-, and reverse quarter-turn twists Ti ,α,T
2
i ,α,T

3
i ,α

are called basic twists. A basic sequence is a sequence
〈ση : η < θ〉 of basic twists ση for some ordinal θ.

I Basic twists act on configurations in the natural way, namely,
if T is a basic twist and f a configuration, then the
configuration Tf is given by Tf (c) = f (T−1c).

I Given a basic sequence 〈ση : η < θ〉 and an initial
configuration f0, we define the corresponding sequence of
configurations 〈fη : η ≤ θ〉 = 〈ση : η < θ〉 ∗ f0 as follows.
I At successor stages, we act by the next element of the twist

sequence, fη+1 = σηfη.
I At limit stages λ, we set fλ(c) = limη↗λ fη(c) if this limit

exists and fλ(c) = ∅ otherwise.

I Note that this always yields a terminal configuration fθ (even
if θ is a limit ordinal). We write fθ = 〈ση : η < θ〉 · f0.
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Convergence

Definition

Consider a basic sequence σ = 〈ση : η < θ〉 and the corresponding
sequence 〈fη : η ≤ θ〉 = σ ∗ f0 for a (legal) initial configuration f0.

We say that the sequence 〈fη : η ≤ θ〉 is convergent if fθ is legal. In
this case, we say that the twist sequence σ is convergent over f0.
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Variants

I The edged cube Q̄L is defined similarly except for the
following.
I Its faces are copies of L̄† × L̄† (rather than L† × L†).
I Strictly speaking, Q̄L is not embedded in U since more than

one cell (along edges of adjacent faces) may have the same
position. In such ambiguous cases, we specify a cell by
underlining the coordinate specifying the face, e.g.,
(α,−∞,+∞) is the Front cell at the Front Down edge in the
x = α layer.

I For Q̄L, face twists also affect the adjacent edge and corner
cells in the obvious way. For example,
Ty ,−∞(α,−∞,+∞) = (+∞,−∞,−α).

I We may also consider (egded and edgeless) cubes analogous
to N × N × N for even N by omitting (or ignoring) the 0
layers.
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Cell clusters

Definition (Cell cluster)

The cluster of a cell c is its orbit under the basic twists.

I A cell/cluster is center if two of its
coords are 0, cross if one coord is 0,
diagonal if its face coords are equal or
opposite, edge if it has two ±∞
coords, or corner if it has three ±∞
coords.

I Clusters partition the cube. Excepting
the center cluster, every cluster has
exactly 24 cells. (The center cluster
has 6.)
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Observation

Illegality is persistent in the sense that no legal configuration can
be obtained from an illegal one (in any ordinal number of moves).

Proof.

Suppose f0 is illegal, i.e., f0(c0) = ∅ for some c0.
Apply a basic sequence 〈ση : η < θ〉 and suppose that every
configuration fη except possibly fθ has a colorless cell in the cluster
C of c0, i.e., fη(cη) = ∅ for some cη ∈ C for each η < θ.
If θ = ξ + 1 is a successor ordinal, then
fθ(σξcξ) = fξ+1(σξcξ) = fξ(cξ) = ∅.
If θ is a limit, by finiteness of C , cη has a cofinal constant
subsequence cην = c and then fθ(c) = ∅.
Thus fθ(c) = ∅ for some c ∈ C and the claim follows by
induction.
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Definition (Equivalence of twist sequences)

Two basic sequences σ, τ are equivalent if σ · f0 = τ · f0 for every
initial configuration f0. In this case, we write σ ∼ τ .

The relevant algebraic structure is the monoid of basic sequences
under concatenation modulo ∼.
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Twist-finite sequences

Twist-finiteness

Say a basic sequence σ is twist-finite if each basic twist appears in
it only finitely many times.

I Since each cell is affected non-trivially by only nine basic
twists, it follows that every twist-finite sequence is convergent
over every (legal) initial configuration.

I The twist-finite sequences are closed under ∼, hence form a
submonoid.

I In fact, they form a group in which every element has finite
order dividing K = lcm{|π| : π ∈ S24}.
I Proof sketch. Every twist-finite sequence σ acts as a product

of permutations of clusters
∏

C πC . Finite iterates σn are also
twist-finite. σK acts via (

∏
C πC )K =

∏
C π

K
C = id. Therefore

[σK−1] = [σ]−1.
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Edged cubes

A priori, twist-finiteness is too restrictive, we really only care about
convergence over fsolved.

These notions are the same for the edged cube Q̄L!
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Say distinct edge/corner cells are coupled if they have the same
coordinates, e.g., (α,+∞,+∞) and (α,+∞,+∞).

Lemma

If f is a legal configuration accessible from fsolved, then for each
pair γ, γ′ ∈ Γ of colors and each non-corner edge cluster C , there
is at most one pair of coupled edge cells c , c ′ with c ∈ C and
f (c) = γ and f (c ′) = γ′. Similarly, for each γ, γ′, γ′′ ∈ Γ, there is
at most one triple of coupled corner cells c, c ′, c ′′ such that
f (c) = γ, f (c ′) = γ′, f (c ′′) = γ′′.

Proof.

Let σ convergent over fsolved and consider σ ∗ fsolved.
We argue no stage can first violate the lemma.
fsolved has the property. Successor case is trivial. If a violation
occurs at a limit stage, then the (two or three) witnessing cells
must have stabilized color by some earlier stage.
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Theorem

For the edged cube Q̄L, then sequences convergent over the solved
configuration are exactly the twist-finite sequences.

Proof.

Clearly the twist-finite sequences converge over fsolved.
Conversely, suppose 〈ση : η < θ〉 is convergent over fsolved but
some twist T appears along an infinite subsequence σην = T .
WLOG, θ is a limit ordinal and θ = supν ην .
First, suppose T is not a face twist and let c, c ′ be any pair of
coupled edge cells affected non-trivially by T .
Then,
fθ(Tc) = limν fην+1(Tc) = limν Tfην (Tc) = limν fην (c) = fθ(c)
and likewise fθ(Tc ′) = fθ(c ′). But Tc and Tc ′ are also coupled,
contradiction.
If T is a face twist, argue similarly with a triple of coupled corner
cells affected by T .
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Every accessible legal configuration is solvable!

The main theorem for the edged cube follows immediately.

Corollary

Every legal configuration of the edged cube Q̄ℵα accessible from
fsolved is solvable (in < ωα+1 many moves).

Open question: Is < ωα+1 optimal?
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We have answered the question of solvability in principle (for the
edged cube) but the result is not fully satisfactory.

I The solution sequence depends not only on the scrambled
configuration f , but on a sequence of twists σ obtaining f .

Perhaps we can adapt finite Rubik’s cube algorithms.

I For the edged cube, I do not yet know how to do so in a
convergent manner.

Solving infinitary Rubik’s cubes Jack Edward Tisdell



Introduction Definitions Universal results Edged cubes The countable edgeless cube Open questions

Countable edgeless cube

I For the N × N × N cube, each cluster can be solved
individually in O(1) many moves while leaving all other
clusters unchanged.

I Thus, solving all clusters in series yields an O(N2) solution.
Näıvely adapting to the infinite case typically diverges.

I By cleverly parallelizing the cluster solutions, one can improve
the overall solution to O(N2/ logN) (which is in fact optimal).

I We can do something similar in the countable edgeless case to
obtain an ω2 solution procedure which works for a broad class
of configurations including all accessible ones (and possibly
more).
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Standard configurations

Definition

A configuration of the edgeless cube QL is standard if the center
cluster is in the solved configuration up to a global rotation and
every non-center cluster has exactly four of each color of Γ.

I (By induction) every legal configuration accessible from fsolved

is standard.

I Standardness is clearly a necessary condition for solvability.

I Every standard non-center cluster configuration is WLOG an
even permutation of the solved configuration. (Otherwise,
transpose two like-colored cells.)
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Face quadrants and cluster configurations

I Let D = L× ({0} ∪ L)× {+∞} be the Upper Right quadrant
of the Front face. We identify D with its xy projection.

I The action of the basic twists partitions QL into 24 translates
of D and the center cluster.

I We may specify a (non-center) cluster, denoted C (α, β) by its
representative (α, β) ∈ D. In particular, the diagonal clusters
are the C (α, α) and the cross clusters are the C (α, 0).

I Each face quadrant contains exactly one cell of each
non-center cluster and this gives a 1-1 correspondence
between clusters.

I We will say that two clusters have the same configuration if
corresponding cells have the same color.
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Individual cluster solutions
By case analysis, the sequence

〈Rα,F ′β,R ′α,Fβ,U ′+∞,Fβ,Rα,F ′β,R ′α,U+∞〉 (∗)

in the notation of the diagram cycles the three cells of the (β, α)
cluster among the quadrants highlighted in red, greed, and blue
and does not affect any other cells.

I Other cells may change
temporarily but are restored.

I (This is a commutator in the
Rubik’s jargon.)

I Only involves slice twists in
±α,±β layers and face twists.

D

0 α

Rα

R′
α

0
β

0

γUγ U′
γ

Fβ

F ′
β
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Individual cluster solutions

For each choice of front and top face, we get such a sequence
which yields a 3-cycle on the (β, α) cluster.

These 24 cycles generate the even permutations on the cluster.

Assembling finitely many such sequences, we can solve any give
cluster C (β, α) using only ±α,±β slice twist and face twists.
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Solving clusters in parallel

If many clusters are in the same configuration and have a certain
product structure, we can parallelize these solutions so that they
share the same face twists.

Lemma

Suppose X × Y ⊂ D with X and Y disjoint. If all clusters X × Y
have the same configuration, then there is a twist-finite basic
sequence of ordinal length ≤ (|X |+ |Y |+ 1) · k for some finite k
involving only face moves and slice moves with index in X ∪ Y
which, when applied to the given configuration solves all clusters
X × Y and fixes (i.e., restores) all other clusters except possibly
(X × Y ) ∪ (X × X ) ∪ (Y × Y ).
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Proof.

Let h be the common configuration of the X × Y clusters.
These clusters admit cluster solutions with common type sequences
a1, . . . , ak , b1, . . . , bk , and c1, . . . , ck (depending only on h).
For each 1 ≤ i ≤ k , let si = 〈Sai ,x : x ∈ X 〉_〈Sbi ,y : y ∈ Y 〉_〈Fci 〉.
Slice moves of the same type commute so we may take si to have
length |X |+ |Y |+ 1 (possibly shorter due to identity moves).
Consider the twist-finite sequence s = s1

_s2
_ · · ·_sk .

Any cell in cluster C (α, β) can only possibly be affected by face
moves and slice moves of index α or β. Thus, the cluster of each
(x , y) ∈ X × Y is affected only by the subsequence
〈Sa1,x , Sb1,y ,Fc1 , . . . ,Sak ,x , Sbk ,y ,Fck 〉 of s which is a cluster
solution for h. (NB, this relies on the disjointness of X and Y .)
Similarly, the subsequence which affects each other cluster has no
effect by the properties of cluster solutions, with the possible
exceptions of X × X and Y × Y .
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So far, the results of this section apply to the edgeless cube of
arbitrary cardinality. Now we restrict our attention to the
countable case.

Theorem

On the countable edgeless cube QL with |L| = ℵ0, every standard
configuration is solvable in at most ω2 many moves.

Solving infinitary Rubik’s cubes Jack Edward Tisdell



Introduction Definitions Universal results Edged cubes The countable edgeless cube Open questions

Proof.

Let L = {1, 2, 3, . . . } endowed with the usual order.
The solution proceeds in ω many stages.
As a preliminary step, solve the center cluster C (0, 0).
There are at most m = |A24| = 24!/2 many cluster configurations.
Stage 0: For each of the m cluster configurations h in turn, let Xh

be the set of x ∈ L where C (x , 0) is in configuration h and solve
Xh × {0} in ≤ (|Xh|+ 2) · k ≤ ω · k + 2 many moves.
Stage n: For each h in turn, let Xh be the set of
x ∈ L \ {0, 1, . . . , n} with C (x , n) in configuration h and solve all
Xh × {n}. Similarly, solve each {n} × Yh in turn. Finally, solve the
diagonal cluster C (n, n) (in finitely many moves). Altogether, this
stage uses ≤ (ω · km + 2) · 2 + ω ≤ ω · (km + 1) many moves.
Stage n uses only face twists and slice twists of index ≥ n, so each
cluster is affected only by face twists after some stage.
fsolved is invariant under face twists, so every cluster stabilizes on
fsolved before stage ω2.
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End stage 0

Stage 1a Stage 1b Stage 1c

Stage 2c Stage 2b Stage 2b
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I This argument breaks down in the uncountable case. The
obstruction is the Cartesian product structure imposed by the
parallelization lemma. In the countable case, we can afford to
consider only one row/column at a time, thus trivializing the
product structure.

I This solution also fails on the (countable) edged cube because
it uses infinitely many face twists. In fact, when applied to the
edged cube, it converges to fsolved except along the edges.

I But we can push the argument a little further:

Theorem

For the countable edgeless cube, every standard configuration
which is invariant under face twists can be obtained from any
standard configuration in ≤ ω2 many moves.

Proof sketch.

Parallelize cluster solutions by desired permutation.
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Accessibility from and to fsolved

standard

legal
accessible
from fsolved

standard
face-twist
invariant

fsolved

≤ ω2

< ω1

≤ ω2
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Open questions

I Are all accessible configurations of uncountable edgeless cubes
solvable? All standard configurations?

I Are there any standard but inaccessible configurations?

I Can the ≤ ω2 solution length for Qℵ0 be improved? Can it be
improved uniformly?

I In the edgeless case, are there configurations only accessible
via non-twist-finite sequences?

I Do the answers to the above differ if we do not allow half-turn
twists?

I Is there a uniform (fast) solution procedure for the edged
cube?
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